Cell proliferation in liver of Mmh/Ogg1-deficient mice enhances mutation frequency because of the presence of 8-hydroxyguanine in DNA.

نویسندگان

  • Tsuyoshi Arai
  • Vincent P Kelly
  • Kimiyo Komoro
  • Osamu Minowa
  • Tetsuo Noda
  • Susumu Nishimura
چکیده

The Mmh/Ogg1 gene product maintains the integrity of the genome by removing the damaged base 8-hydroxyguanine (8-OH-G), one of the major DNA lesions generated by reactive oxygen species. Using Ogg1-deficient mice, we sought to establish if cells having high amounts of 8-OH-G have the ability to proliferate and whether the mutation frequency increases after proliferation in vivo. When KBrO(3), a known renal carcinogen, at a dose of 2 grams/liter was administered to Ogg1 mutant mice for 12 weeks, the amount of 8-OH-G in liver DNA from treated Ogg1(-/-) mice increased 26.1 times that of treated Ogg1(+/+) mice. The accumulated 8-OH-G did not decrease 4 weeks after cessation of KBrO(3) treatment. Partial hepatectomy was performed on Ogg1(+/-) and Ogg1(-/-) mice after being treated with KBrO(3) for 12 weeks. The remnant liver from Ogg1(-/-) mice treated with KBrO(3) regenerated to the same extent as nontreated Ogg1(+/-) mice. In addition, 8-OH-G was not repaired during cell proliferation by partial hepatectomy, indicating that there is no replication coupled repair of preexisting 8-OH-G. The mutation frequency after the regeneration of liver from treated Ogg1(-/-) mice showed a 3.5-fold increase compared with before regeneration. This represents a mutation frequency 6.2 times that of normal levels. The proliferation of cells having accumulated amounts of 8-OH-G caused mainly GC-->TA transversions. These results showed that inactivation of the Ogg1 gene leads to a higher risk of cancer because cells with accumulated 8-OH-G still retain the ability to proliferate, leading to an increase in the mutation frequency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mmh/Ogg1 gene inactivation results in accumulation of 8-hydroxyguanine in mice.

The major mutagenic base lesion in DNA caused by exposure to reactive oxygen species is 8-hydroxyguanine or 7, 8-dihydro-8-oxoguanine (8-OH-G). Products of the human MMH/OGG1 gene are known to catalyze in vitro the reactions repairing this DNA lesion. To analyze the function of Mmh in vivo, we generated a mouse line carrying a mutant Mmh allele by targeted gene disruption. Mmh homozygous mutant...

متن کامل

Progression of Hepatic Adenoma to Carcinoma in Ogg1 Mutant Mice Induced by Phenobarbital

The carcinogenic potential of phenobarbital (PB) was assessed in a mouse line carrying a mutant Mmh allele of the Mmh/Ogg1 gene encoding the enzyme oxoguanine DNA glycosylase (Ogg1) responsible for the repair of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Mmh homozygous mutant (Ogg1-/-) and wild-type (Ogg1+/+) male and female, 10-week-old, mice were treated with 500 ppm PB in diet for 78 weeks. Hepat...

متن کامل

Accumulation of the oxidative base lesion 8-hydroxyguanine in DNA of tumor-prone mice defective in both the Myh and Ogg1 DNA glycosylases.

The OGG1 and MYH DNA glycosylases prevent the accumulation of DNA 8-hydroxyguanine. In Myh(-/-) mice, there was no time-dependent accumulation of DNA 8-hydroxyguanine in brain, small intestine, lung, spleen, or kidney. Liver was an exception to this general pattern. Inactivation of both MYH and OGG1 caused an age-associated accumulation of DNA 8-hydroxyguanine in lung and small intestine. The e...

متن کامل

Normal somatic hypermutation of Ig genes in the absence of 8-hydroxyguanine-DNA glycosylase.

The hypermutation cascade in Ig V genes can be initiated by deamination of cytosine in DNA to uracil by activation-induced cytosine deaminase and its removal by uracil-DNA glycosylase. To determine whether damage to guanine also contributes to hypermutation, we examined the glycosylase that removes oxidized guanine from DNA, 8-hydroxyguanine-DNA glycosylase (OGG1). OGG1 has been reported to be ...

متن کامل

Cloning and characterization of mammalian 8-hydroxyguanine-specific DNA glycosylase/apurinic, apyrimidinic lyase, a functional mutM homologue.

8-Hydroxyguanine (8-OH-G) is one of the major DNA oxidation products implicated in mutagenesis induced by oxygen radical-forming agents, including ionizing radiation. It is also believed to be involved in spontaneous mutation induced by metabolically produced oxygen radicals. A mammalian homologue of 8-OH-G glycosylase/apurinic, apyrimidinic lyase (mutM homologue, MMH) has been identified in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 63 14  شماره 

صفحات  -

تاریخ انتشار 2003